
The end of the world



In the reading for today, Leslie introduces a familiar sort of reasoning:
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1 The doomsday argument

Leslie begins his exposition of the argument with an example:

This reasoning is, fairly clearly, a kind of reasoning upon which we rely all of the time. It mightbe summed up like this: if we have two theories, and the first makes a certain event much morelikely than the other, and we observe that event, that should lead us to favor the first theory.Note that this doesn’t mean that we should always think that the first theory is true; rather,what it means is that, whatever our initial estimate of the probability of the first theory, weshould increase that estimate upon observing the event in question.
Now consider the application of that line of reasoning to the examples of balls shot at randomfrom a lottery machine. Suppose that you know that the balls in the machine are numberedsequentially (with no repeats) beginning with 1, but that you don’t know how many balls thereare in the machine. Now we start the machine, and a ball comes out with ‘3’ on it. You’re nowasked: do you think that it is more likely that the machine has 10 balls in it, or 10,000 balls init? The line of reasoning sketched above seems to favor the hypothesis that there are just 10balls in the machine. (Note that, whichever hypothesis you endorse, you could be wrong; thisis not a form of reasoning which delivers results guaranteed to be correct. The question is justwhich of these hypotheses is most likely, given the evidence.)

The basic idea here is one which we employ all the time in our ordinary reasoning about the world. It 
might be summed up as follows:

The principle of confirmation 
!
E is evidence for T1 over T2 if the probability of 
E given T1 > the probability of E given T2.

Here E is our evidence, and T1 and T2 are two theories between which we are trying to decide. When 
we talk about the probability of X given Y, we are talking about the probability that X will take place, if Y 
also happens.
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The principle of confirmation 
!
E is evidence for T1 over T2 if the probability of 
E given T1 > the probability of E given T2.

Here E is our evidence, and T1 and T2 are two theories between which we are trying to decide. When 
we talk about the probability of X given Y, we are talking about the probability that X will take place, if Y 
also happens.

Now consider the application of that line of reasoning to the examples of balls shot at random from a lottery 
machine. Suppose that you know that the balls in the machine are numbered sequentially (with no repeats) 
beginning with 1, but that you don't know how many balls there are in the machine. Now we start the 
machine, and a ball comes out with “3” on it. You're now asked: do you think that it is more likely that the 
machine has 10 balls in it, or 10,000 balls in it? 

The principle of confirmation suggests - correctly, it seems - that our piece of evidence favors the hypothesis 
that there are just 10 balls in the machine. This is because the probability that “3” comes out given that balls 
1-10 are in the machine is 10%, whereas the probability that this ball comes out given that balls numbered 
1-10,000 are in the machine is only 0.01%.!
!
(Note that, whichever hypothesis you endorse, you could be wrong; this is not a form of reasoning which 
delivers results guaranteed to be correct. The question is just which of these hypotheses is most likely, given 
the evidence.)

This gives us some information about how to reason about probabilities, but not very much. It tells us when 
evidence favors one theory over another, but does not tell us how much. It leaves unanswered questions like: 
if before I thought that the 10,000 ball hypothesis was 90% likely to be true, should I now think that the 10 ball 
hypothesis is more than 50% likely to be true? If I assigned each of the two hypotheses prior to the 
emergence of the “3” ball a probability of 0.5 (50% likely to be true), what probabilities should I assign to the 
theories after the ball comes out?
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To understand Leslie’s argument, we’ll have to understand how to answer these sorts of questions.

One way to answer these questions employs a widely 
accepted rule of reasoning called “Bayes’ theorem,” 
named after Thomas Bayes, an 18th century English 
mathematician and Presbyterian minister.

To arrive at the theorem, we begin with the following 
definition of conditional probability, where, as is 
standard, we abbreviate “the conditional probability of x 
given y” as “Pr(x | y)”:

1.1 Bayes’ theorem

In fact, we can do better than just saying that in such cases you should raise the probability you
assign to one theory. We can, using a widely accepted rule of reasoning called ‘Bayes’ theorem’,
say how much you should raise your probability assignment. (One reason why this theorem is
widely accepted is that following it enables one to avoid ‘Dutch book’ arguments.)

To arrive at Bayes’ theorem, we can begin with the definition of what is called ‘conditional
probability’: the probability of one claim, given that another is true. In particular, for arbitrary
claims a and b, we can say that

P (a|b) = P (a&b)
P (b)

In other words, the probability of a given b is the chance that a and b are both true, divided by
the chances that b is true. For example, let a = ‘Obama wins’, and let b = ‘a man wins.’ Suppose
that each of Obama, Hilary, and McCain have a 1/3 chance of winning. Then the conditional
probability is that Obama wins, given that a man wins, is 1/2. Intuitively, if you found out only
that a man would win, you should then (given the initial probability assignments) think that
there is a 0.5 probability that Obama will win.

Using this definition of conditional probability, we can then argue as follows, assuming that P (b)
6= 0:

1. P (a|b) = P (a&b)
P (b) def. of conditional probability

2. P (b|a) = P (a&b)
P (a) def. of conditional probability

3. P (a|b) ⇤ P (b) = P (a&b) (1), multiplication by =’;s
4. P (a&b) = P (b|a) ⇤ P (a) (2), multiplication by =’s
5. P (a|b) ⇤ P (b) = P (b|a) ⇤ P (a) (3),(4)
C. P (a|b) = P (b|a)�P (a)

P (b) (5), division by =’s

This conclusion is Bayes’ theorem. Often, what we want to know is, intuitively, the probability
of some hypothesis ‘h’ given some evidence ‘e’; then we would write the theorem as:

P (h|e) = P (h)�P (e|h)
P (e)

Consider what this would say about the example of the lottery machine. Suppose for simplicity
that you know going in that there are only two options, which are equally likely to be correct:
that there are 10 balls in the machine, and that there are 10,000. Let e be the evidence that the
first ball to come out is #3, and let h be the hypothesis that there are 10 balls in the machine.
Then we might say:

P (h) = 0.5
P (e|h) = 0.1
P (e) = 0.5(0.1 + 0.0001) = 0.05005

Then we find, via Bayes’ theorem, that P (h|e) = 0.5�0.1
0.05005 = 0.999. So, on the basis of the evidence

that the first ball to come out was #3, you should revise your confidence in the 10-ball hypothesis
from 50% to 99.9% certainty.

Bayes’ theorem can be restated in the following way:

2

This says, in effect, that the probability of a given b is 
the chance that a and b are both true, divided by the 
chances that b is true.
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This says, in effect, that the probability of a given b is 
the chance that a and b are both true, divided by the 
chances that b is true.

Let’s work through an example.  Suppose that this is some time before the 2008 election, and let a = 
‘Obama wins’, and let b = ‘a man wins.’ Suppose that you think that each of Obama, Hilary, and McCain 
have a 1/3 chance of winning. Then what is the conditional probability that Obama wins, given that a man 
wins, using the above formula?

The conditional probability is that Obama wins, given that a man wins, is ½, since in this case Pr(a&b)=⅓ 
and Pr(b)=⅔. Intuitively, if you found out only that a man would win, you should then (given the initial 
probability assignments) think that there is a 0.5 probability that Obama will win.

Using this definition of conditional probability, we can then argue for Bayes’ theorem as follows, assuming 
that Pr(b)≠0.

To arrive at the theorem, we begin with the following 
definition of conditional probability, where, as is 
standard, we abbreviate “the conditional probability of x 
given y” as “Pr(x | y)”:

One way to answer these questions employs a widely 
accepted rule of reasoning called “Bayes’ theorem,” 
named after Thomas Bayes, an 18th century English 
mathematician and Presbyterian minister.



Definition of conditional probability

1.1 Bayes’ theorem

In fact, we can do better than just saying that in such cases you should raise the probability you
assign to one theory. We can, using a widely accepted rule of reasoning called ‘Bayes’ theorem’,
say how much you should raise your probability assignment. (One reason why this theorem is
widely accepted is that following it enables one to avoid ‘Dutch book’ arguments.)

To arrive at Bayes’ theorem, we can begin with the definition of what is called ‘conditional
probability’: the probability of one claim, given that another is true. In particular, for arbitrary
claims a and b, we can say that

P (a|b) = P (a&b)
P (b)

In other words, the probability of a given b is the chance that a and b are both true, divided by
the chances that b is true. For example, let a = ‘Obama wins’, and let b = ‘a man wins.’ Suppose
that each of Obama, Hilary, and McCain have a 1/3 chance of winning. Then the conditional
probability is that Obama wins, given that a man wins, is 1/2. Intuitively, if you found out only
that a man would win, you should then (given the initial probability assignments) think that
there is a 0.5 probability that Obama will win.

Using this definition of conditional probability, we can then argue as follows, assuming that P (b)
6= 0:

1. P (a|b) = P (a&b)
P (b) def. of conditional probability

2. P (b|a) = P (a&b)
P (a) def. of conditional probability

3. P (a|b) ⇤ P (b) = P (a&b) (1), multiplication by =’;s
4. P (a&b) = P (b|a) ⇤ P (a) (2), multiplication by =’s
5. P (a|b) ⇤ P (b) = P (b|a) ⇤ P (a) (3),(4)
C. P (a|b) = P (b|a)�P (a)

P (b) (5), division by =’s

This conclusion is Bayes’ theorem. Often, what we want to know is, intuitively, the probability
of some hypothesis ‘h’ given some evidence ‘e’; then we would write the theorem as:

P (h|e) = P (h)�P (e|h)
P (e)

Consider what this would say about the example of the lottery machine. Suppose for simplicity
that you know going in that there are only two options, which are equally likely to be correct:
that there are 10 balls in the machine, and that there are 10,000. Let e be the evidence that the
first ball to come out is #3, and let h be the hypothesis that there are 10 balls in the machine.
Then we might say:

P (h) = 0.5
P (e|h) = 0.1
P (e) = 0.5(0.1 + 0.0001) = 0.05005

Then we find, via Bayes’ theorem, that P (h|e) = 0.5�0.1
0.05005 = 0.999. So, on the basis of the evidence

that the first ball to come out was #3, you should revise your confidence in the 10-ball hypothesis
from 50% to 99.9% certainty.

Bayes’ theorem can be restated in the following way:

2

Using this definition of conditional probability, we can then argue for 
Bayes’ theorem as follows, assuming that Pr(b)≠0.

1.1 Bayes’ theorem

In fact, we can do better than just saying that in such cases you should raise the probability you
assign to one theory. We can, using a widely accepted rule of reasoning called ‘Bayes’ theorem’,
say how much you should raise your probability assignment. (One reason why this theorem is
widely accepted is that following it enables one to avoid ‘Dutch book’ arguments.)

To arrive at Bayes’ theorem, we can begin with the definition of what is called ‘conditional
probability’: the probability of one claim, given that another is true. In particular, for arbitrary
claims a and b, we can say that

P (a|b) = P (a&b)
P (b)

In other words, the probability of a given b is the chance that a and b are both true, divided by
the chances that b is true. For example, let a = ‘Obama wins’, and let b = ‘a man wins.’ Suppose
that each of Obama, Hilary, and McCain have a 1/3 chance of winning. Then the conditional
probability is that Obama wins, given that a man wins, is 1/2. Intuitively, if you found out only
that a man would win, you should then (given the initial probability assignments) think that
there is a 0.5 probability that Obama will win.

Using this definition of conditional probability, we can then argue as follows, assuming that P (b)
6= 0:

1. P (a|b) = P (a&b)
P (b) def. of conditional probability

2. P (b|a) = P (a&b)
P (a) def. of conditional probability

3. P (a|b) ⇤ P (b) = P (a&b) (1), multiplication by =’;s
4. P (a&b) = P (b|a) ⇤ P (a) (2), multiplication by =’s
5. P (a|b) ⇤ P (b) = P (b|a) ⇤ P (a) (3),(4)
C. P (a|b) = P (b|a)�P (a)

P (b) (5), division by =’s

This conclusion is Bayes’ theorem. Often, what we want to know is, intuitively, the probability
of some hypothesis ‘h’ given some evidence ‘e’; then we would write the theorem as:

P (h|e) = P (h)�P (e|h)
P (e)

Consider what this would say about the example of the lottery machine. Suppose for simplicity
that you know going in that there are only two options, which are equally likely to be correct:
that there are 10 balls in the machine, and that there are 10,000. Let e be the evidence that the
first ball to come out is #3, and let h be the hypothesis that there are 10 balls in the machine.
Then we might say:

P (h) = 0.5
P (e|h) = 0.1
P (e) = 0.5(0.1 + 0.0001) = 0.05005

Then we find, via Bayes’ theorem, that P (h|e) = 0.5�0.1
0.05005 = 0.999. So, on the basis of the evidence

that the first ball to come out was #3, you should revise your confidence in the 10-ball hypothesis
from 50% to 99.9% certainty.

Bayes’ theorem can be restated in the following way:

2

Derivation of Bayes’ theorem

The conclusion of this argument is Bayes’ theorem. Intuitively, what it says is that if we want to know the probability 
of some theory given a bit of evidence, what we need to know are three things: (1) the probability of the evidence 
given the theory (i.e., how likely the evidence is to happen if the theory is true), (2) the prior probability of the theory, 
and (3) the prior probability of the evidence.
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Bayes’ theorem

A good example of this sort of situation is given by our example of the lottery balls. 
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Hence, after you see the “3” ball come out of the lottery machine, you should revise the probability you assign to the 
10-ball hypothesis from 0.5 to .999 - that is, you should switch from thinking that the machine has a 50% chance of 
being a 10-ball machine to thinking that it has a 99.9% chance of being a 10-ball machine.

Now suppose that the first ball that comes out, again at random, is a “3”. Bayes’ theorem can tell us, given the 
foregoing information, how likely it is that the machine before us contains 10 rather than 10,000 balls. According to 
Bayesians, we figure this out by conditionalizing on our evidence, i.e. finding the conditional probability of the 
theory given the evidence.
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Hence, after you see the “3” ball come out of the lottery machine, you should revise the probability you assign to the 
10-ball hypothesis from 0.5 to .999 - that is, you should switch from thinking that the machine has a 50% chance of 
being a 10-ball machine to thinking that it has a 99.9% chance of being a 10-ball machine.

An intuitive way to think about what this all means is in terms of what bets you would be willing to accept. If you 
think that something has a 50% chance of happening, then you should be willing to accept all bets which give you 
better than even odds, and willing to reject all bets which give you worse odds. Analogous remarks apply to different 
probability assignments.

This link between probability assignments and bets is one way to bring out a strength of the Bayesian approach to 
belief formation. Following the Bayesian rule of conditionalization is the only way to avoid being subject to a Dutch 
book.

A Dutch book is a combination of bets which, no matter what the outcome, is sure to lose. For example, suppose 
that we have a 10 horse race, and you have the following views about the probabilities that certain horses will win.

$2 on #3 to win, at 3-2 odds!
$3 on #6 to win, at even odds!
$1.50 on #8 to win, at 3-1 odds

If these are your probability assignments, then you should be willing to make the following three bets:

#3 has at least a 40% chance of winning!
#6 has a slightly better than even chance of winning!
#8 has a better than 1 in 3 chance of winning
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This link between probability assignments and bets is one way to bring out a strength of the Bayesian approach to 
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With this Bayesian apparatus in hand, let’s return to Leslie’s argument.

Leslie asks us to consider two hypotheses about the future course of human civilization:

Doom Soon. The human race will go extinct by 2150, with the total 
humans born by the time of such extinction being 500 billion.

Doom Delayed. The human race will go on for several thousand 
centuries, with the total humans born before the race goes extinct being 
50 thousand billion.

Leslie thinks that we can use a certain kind of evidence we have, along with Bayesian conditionalization, to 
show how likely these two hypotheses are. To do this, though, we’ll first have to think about how likely we 
think these two hypotheses are to begin with.

Doom Soom is pretty grim; it means that the human race will go extinct during the lives of your grandchildren. 
Let’s suppose that we think that this is pretty unlikely - maybe that it has a 1% chance of happening. Let’s 
suppose (we’ll relax this assumption later) that Doom Delayed is the only other possibility, so that it has a 99% 
chance of happening.

What evidence could we possibly have now to help us decide between these hypotheses now? Some obvious 
candidates spring to mind: the proliferation of nuclear weapons; astronomical calculations of the probabilities of 
large asteroids colliding with the earth; prophecies involving the end of the Mayan calendar; etc. But the 
evidence that Leslie has in mind is of a different sort.
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that a man would win, you should then (given the initial probability assignments) think that
there is a 0.5 probability that Obama will win.

Using this definition of conditional probability, we can then argue as follows, assuming that P (b)
6= 0:

1. P (a|b) = P (a&b)
P (b) def. of conditional probability

2. P (b|a) = P (a&b)
P (a) def. of conditional probability

3. P (a|b) ⇤ P (b) = P (a&b) (1), multiplication by =’;s
4. P (a&b) = P (b|a) ⇤ P (a) (2), multiplication by =’s
5. P (a|b) ⇤ P (b) = P (b|a) ⇤ P (a) (3),(4)
C. P (a|b) = P (b|a)�P (a)

P (b) (5), division by =’s

This conclusion is Bayes’ theorem. Often, what we want to know is, intuitively, the probability
of some hypothesis ‘h’ given some evidence ‘e’; then we would write the theorem as:

P (h|e) = P (h)�P (e|h)
P (e)

Consider what this would say about the example of the lottery machine. Suppose for simplicity
that you know going in that there are only two options, which are equally likely to be correct:
that there are 10 balls in the machine, and that there are 10,000. Let e be the evidence that the
first ball to come out is #3, and let h be the hypothesis that there are 10 balls in the machine.
Then we might say:

P (h) = 0.5
P (e|h) = 0.1
P (e) = 0.5(0.1 + 0.0001) = 0.05005

Then we find, via Bayes’ theorem, that P (h|e) = 0.5�0.1
0.05005 = 0.999. So, on the basis of the evidence

that the first ball to come out was #3, you should revise your confidence in the 10-ball hypothesis
from 50% to 99.9% certainty.

Bayes’ theorem can be restated in the following way:
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Let’s suppose that we think that this is pretty unlikely - maybe that it has a 1% chance of happening. Let’s 
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Doom Soon. The human race will go extinct by 2150, with the total 
humans born by the time of such extinction being 500 billion.

Doom Delayed. The human race will go on for several thousand 
centuries, with the total humans born before the race goes extinct being 
50 thousand billion.

That evidence is: each of us is one of the first 50 billion human beings born. Let’s now ask, using the Bayesian 
method, what probability, in light of this evidence, we should assign to Doom Soon (DS) and Doom Delayed 
(DD).
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[99 * Pr(e | DD) + 1 * Pr(e | DS)] / 100 = .00199
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In fact, we can do better than just saying that in such cases you should raise the probability you
assign to one theory. We can, using a widely accepted rule of reasoning called ‘Bayes’ theorem’,
say how much you should raise your probability assignment. (One reason why this theorem is
widely accepted is that following it enables one to avoid ‘Dutch book’ arguments.)

To arrive at Bayes’ theorem, we can begin with the definition of what is called ‘conditional
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That evidence is: each of us is one of the first 50 billion human beings born. Let’s now ask, using the Bayesian 
method, what probability, in light of this evidence, we should assign to Doom Soon (DS) and Doom Delayed 
(DD).

So we have the following:

Pr(DS) = 0.01

Pr(DD) = 0.99

Pr(e) = 0.00199

Pr(e|DS) = 0.1

Pr(e|DD) = 0.001

And this is all we need to figure out the probabilities of DS and DD conditional on the evidence that we are 
among the first 50 billion human beings born.

P (DD|e) =
P (DD) ⇤ P (e|DD)

P (e)
=

.99 ⇤ .001
.00199

= .497

So, even if we begin by thinking that the probability of Doom Soon is only 1%, reflection on the simple fact that 
we are born among the first 50 billion humans shows that we should think that there is a greater than 50% 
chance that the human race will be extinct in the next 150 years.

P (DS|e) =
P (DS) ⇤ P (e|DS)

P (e)
=

.01 ⇤ .1
.00199

= .503
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from 50% to 99.9% certainty.

Bayes’ theorem can be restated in the following way:
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Bayes’ theoremDoom Soon. The human race will go extinct by 2150, with the total 
humans born by the time of such extinction being 500 billion.

Doom Delayed. The human race will go on for several thousand 
centuries, with the total humans born before the race goes extinct being 
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Pr(DS) = 0.01

Pr(DD) = 0.99

Pr(e) = 0.00199

Pr(e|DS) = 0.1

Pr(e|DD) = 0.001 P (DD|e) =
P (DD) ⇤ P (e|DD)

P (e)
=

.99 ⇤ .001
.00199

= .497

So, even if we begin by thinking that the probability of Doom Soon is only 1%, reflection on the simple fact that 
we are born among the first 50 billion humans shows that we should think that there is a greater than 50% 
chance that the human race will be extinct in the next 150 years.

Varying our initial assumptions changes the outcome dramatically. Suppose that reflection upon the risk of 
climate change, nuclear war, etc. makes us think that we should assign DS and DD roughly equal initial 
probabilities - suppose we think, before considering the fact that we were born in the first 50 billion people, that 
the probability of each is approximately 0.5. On this assumption, the probability of Doom Soon after 
conditionalizing on our evidence is just over 99%.

P (DS|e) =
P (DS) ⇤ P (e|DS)

P (e)
=

.01 ⇤ .1
.00199

= .503

Alternatively, we might think (as Leslie says, p. 202) that if the human race survives past 2050, then it will likely 
colonize other planets, making it quite likely that the population of humans will ultimately grow to be at least 50 
million billion (50 quadrillion). On this assumption, even if we begin by assigning Doom Soon a chance of only 
1%, conditionalizing on the evidence that we were among the first 50 billion born gives Doom Soon a probability 
of 99.9%.
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humans born by the time of such extinction being 500 billion.

Doom Delayed. The human race will go on for several thousand 
centuries, with the total humans born before the race goes extinct being 
50 thousand billion.

So, even if we begin by thinking that the probability of Doom Soon is only 1%, reflection on the simple fact that 
we are born among the first 50 billion humans shows that we should think that there is a greater than 50% 
chance that the human race will be extinct in the next 150 years.

Varying our initial assumptions changes the outcome dramatically. Suppose that reflection upon the risk of 
climate change, nuclear war, etc. makes us think that we should assign DS and DD roughly equal initial 
probabilities - suppose we think, before considering the fact that we were born in the first 50 billion people, that 
the probability of each is approximately 0.5. On this assumption, the probability of Doom Soon after 
conditionalizing on our evidence is just over 99%.

Alternatively, we might think (as Leslie says, p. 202) that if the human race survives past 2050, then it will likely 
colonize other planets, making it quite likely that the population of humans will ultimately grow to be at least 50 
million billion (50 quadrillion). On this assumption, even if we begin by assigning Doom Soon a chance of only 
1%, conditionalizing on the evidence that we were among the first 50 billion born gives Doom Soon a probability 
of 99.9%.

The numbers are surprising. But more surprising than the numbers is the way we arrived at them. One thinks of 
revising one’s view about the likelihood of Doom Soon based on empirical claims about nuclear weapons, 
climate change, asteroids, etc. It seems crazy that such dramatic changes in our view about the extinction of the 
human race should result from mere reflection on how many human beings have been born.

This is why this argument deserves to be considered a paradox. We have a plausible argument from Leslie that 
we should radically change our view of the future based on the number of human beings who have lived, but it 
seems clear that it is unreasonable to change our views on this topic for this reason.



How might one respond to Leslie’s argument?

One could of course respond that the Bayesian apparatus on which it depends is faulty. But that would seem 
hasty; let’s consider some other possibilities.

One possibility is that the problem begins with the obviously false assumption that Doom Soon and Doom 
Delayed are the only relevant possibilities. Would Leslie’s argument still work if we relaxed this assumption, and 
took into account the fact that there are many possible futures for the human species? What would the 
analogous situation be with the example of the numbered balls and the lottery machine?

Let’s consider a different line of objection:

Look, we know that something must be wrong with this way of arguing. After all, 
couldn't someone in ancient Rome have used this reasoning to show that the end 
the world would come before 500 AD? And wouldn't they have been wrong? So 
mustn't there also be something wrong with our using this reasoning?

Is this a good objection?

A more promising line of objection focuses on the apparent assumption that one’s location in the birth order of 
human beings is random. Leslie asks you to, in effect, assimilate this case to the lottery ball example. But why 
think that the fact that I am born in the first 50 billion people is relevantly analogous to the number “50 billion” 
coming out of the lottery machine?

To develop this objection, let’s think more closely about exactly which assumptions are involved in the lottery 
machine example. (This follows the discussion in Mark Greenberg’s “Apocalypse not just yet.”)
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Doom Soon. The human race will go extinct by 2150, with 
the total humans born by the time of such extinction being 
500 billion.

Doom Delayed. The human race will go on for several 
thousand centuries, with the total humans born before 
the race goes extinct being 50 thousand billion.

An analogous case would be a lottery machine which we know to contain either 500 billion or 50 thousand billion 
balls. To make the numbers smaller, let’s think of a pair of lottery machines with, respectively, 500 and 50,000 
balls. Suppose you are confronted with a lottery machine which you know to be of one of the types just 
described. 

Suppose now that the lottery machine spits out a ball which reads “50.” (This is supposed to be analogous to 
finding that you are among the first 50 billion people born.) Isn’t this evidence, as Leslie says, that the machine 
has 500 rather than 50,000 balls in it?

It is - but only if we make two assumptions about the machines. 

First, we must assume that the ball which comes out is randomly selected by the lottery machine. If, for example, 
balls with numbers higher than “100” are slightly larger and never come out of the machine, then obviously the 
fact that a ball labeled “50” came out of the machine would be no evidence at all about how many balls are in 
the machine.

Second, and just as important, we must assume that the ball with the label “50” on it would still be in the urn if 
it contained 500 balls.
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Suppose now that the lottery machine spits out a ball which reads “50.” (This is supposed to be analogous to 
finding that you are among the first 50 billion people born.) Isn’t this evidence, as Leslie says, that the machine 
has 500 rather than 50,000 balls in it?

It is - but only if we make two assumptions about the machines. 

First, we must assume that the ball which comes out is randomly selected by the lottery machine. If, for example, 
balls with numbers higher than “100” are slightly larger and never come out of the machine, then obviously the 
fact that a ball labeled “50” came out of the machine would be no evidence at all about how many balls are in 
the machine.

Second, and just as important, we must assume that the ball with the label “50” on it would still be in the urn if 
it contained 500 balls.

This second condition is easy to miss, since we of course assume that a machine with N balls in it contains those 
balls labeled 1-N. But of course things don’t have to work this way. Suppose that the 500 balls in the 500-ball 
machine were randomly selected from the balls in the 50,000 ball machine. Then the “50” ball might not be in the 
500-ball machine. In this case, would the emergence of the “50” ball from the machine count in favor of the 
hypothesis that the machine before us contains 500 rather than 50,000 balls?

The problem is that any way of understanding the analogy between the Doomsday argument and the lottery 
machine example seems to violate one of the two assumptions needed to legitimate the reasoning used in the 
lottery machine case.

To see this, think about the question: what is the analogue in the Doomsday argument of the numbers written on 
the balls in the lottery machine case?
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Suppose now that the lottery machine spits out a ball which reads “50.” (This is supposed to be analogous to 
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First, we must assume that the ball which comes out is randomly selected by the lottery machine. If, for example, 
balls with numbers higher than “100” are slightly larger and never come out of the machine, then obviously the 
fact that a ball labeled “50” came out of the machine would be no evidence at all about how many balls are in 
the machine.

Second, and just as important, we must assume that the ball with the label “50” on it would still be in the urn if 
it contained 500 balls.

To see this, think about the question: what is the analogue in the Doomsday argument of the numbers written on 
the balls in the lottery machine case?

Here’s one idea: the number “written on you” is the number you happen to be in the birth order of the human 
species. So (let’s suppose) my number is “50 billion” because I just happened to be the 50 billionth person born.

On this idea, people don’t have “built in” numbers: rather, they are assigned the numbers they get based on 
when they are born.

But now imagine that the lottery machine worked this way. On this view, there are an undisclosed number of 
balls in the machine, none of which have numbers written on them. We write the numbers on the balls as they 
come out of the machine, beginning with “1.” Now suppose we get to “50.” Is the fact that a ball with such a low 
number came out evidence that we have a 500-ball machine before us? Clearly not, because the first 
assumption - the assumption of random selection - is violated.
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Suppose now that the lottery machine spits out a ball which reads “50.” (This is supposed to be analogous to 
finding that you are among the first 50 billion people born.) Isn’t this evidence, as Leslie says, that the machine 
has 500 rather than 50,000 balls in it?

It is - but only if we make two assumptions about the machines. 

First, we must assume that the ball which comes out is randomly selected by the lottery machine. If, for example, 
balls with numbers higher than “100” are slightly larger and never come out of the machine, then obviously the 
fact that a ball labeled “50” came out of the machine would be no evidence at all about how many balls are in 
the machine.

Second, and just as important, we must assume that the ball with the label “50” on it would still be in the urn if 
it contained 500 balls.

So let’s suppose instead that every human being comes with a “built in” number, just like the lottery balls have 
numbers written on them prior to their emergence from the lottery machine.

There are two problems with this suggestion. First, how do we know what anyone’s number is, on this way of 
viewing the analogy? What does it even mean to say that people have a certain number?

Second, if we can come up with a way of assigning numbers to all the people that could have existed - we violate 
the second assumption. For there is no guarantee that, if N people exist, they will have the numbers 1-N. 
This is just like the case in which 500 balls are randomly selected from the 50,000 ball machine - in this case, 
even if we somehow knew that my number was 50 billion - this would provide us no evidence at all about how 
many human beings will eventually exist.


